Shahira Abousamra

Postdoctoral Scholar
Department of Biomedical Data Science
School of Medicine, Stanford University

LinkedIn
Google Scholar

About

I am is a Postdoc at the Plevritis lab in the department of Biomedical Data Science at Stanford University. I earned my PhD in Computer Science from Stony Brook University in 2024 under the supervision of Dr. Chao Chen and Dr. Dimitris Samaras. My research spans computer vision, biomedical image analysis, and topological data analysis. I am particulary interested in integrating mathematical modeling with computer vision to create more robust solutions, especially in the context of advancing cancer research and enhancing our understanding of the tumor microenvironment.

Selected Projects and Publications


Generative Models For Pathology


TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model.
M. Xu, S. Gupta, X. Hu, C. Li, S. Abousamra, D. Samaras, P. Prasanna, and C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025. (Oral)
[paper][poster][slides][code]

Spatial Diffusion for Cell Layout Generation.
C. Li, X. Hu, S. Abousamra, M. Xu, and C. Chen
Medical Image Computing and Computer Assisted Intervention (MICCAI), 2024.
[paper][code]

Topology-Guided Multi Class Cell Context Generation for Digital Pathology.
S. Abousamra, R. Gupta, T. Kurc, D. Samaras, J. Saltz, C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
[paper][poster][video][slides][CVPR Daily article]



Semi-Sepervised Segmentation


Semi-supervised Segmentation of Histopathology Images with Noise-aware Topological Consistency.
M. Xu, X. Hu, S. Gupta, S. Abousamra, and C. Chen
European Conference on Computer Vision (ECCV), 2024.
[paper][poster][presentation][code]

Uncertainty Estimation for Tumor Prediction with Unlabeled data.
J. Yun, S. Abousamra, C. Li, R. Gupta, T. Kurc, D. Samaras, A. Van Dyke, J. Saltz, and C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2024. (Oral)
[paper]



Cell Classification


Multi-Class Cell Detection Using Spatial Context Representation.
S. Abousamra, D. Belinsky, J. Arnam, F. Allard, E. Yee, R. Gupta, T. Kurc, D. Samaras, J. Saltz, C. Chen
IEEE/CVF International Conference on Computer Vision (ICCV), 2021, (Oral).
[paper][summary][video][code]



Crowd Counting and Localization

Calibrating Uncertainty For Semi-Supervised Crowd Counting.
C. LI, X. Hu, S. Abousamra, and C. Chen
IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
[paper][poster][presentation][code]

Localization in the Crowd with Topological Constraints.
S. Abousamra, M. Hoai, D. Samaras, C. Chen
AAAI Conference on Artificial Intelligence (AAAI), 2021.
Best presentation in domain award - SBU Computer Science Graduate Research Day, 2021
[paper][poster][video][code]



Brightfield Multiplex IHC Image Analysis

Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.
S. Abousamra*, D. Fassler, J. Yao, R. Gupta, T. Kurc, L. Escobar-Hoyos, D. Samaras, K. Shroyer, J. Saltz, C. Chen
Medical Imaging with Deep Learning (MIDL), 2023 (Oral).
[paper][code]

Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images.
D. Fassler*, S. Abousamra*, R. Gupta, C. Chen, M. Zhao, D. Paredes, S. Batool, B. Knudsen, L. Escobar-Hoyos, K. Shroyer, D. Samaras, T. Kurc, J. Saltz
Diagnostic Pathology, 2020.
[paper][code]

Weakly-Supervised Deep Stain Decomposition For Multiplex IHC Images.
S. Abousamra, D. Fassler, L. Hou, Y. Zhang, R. Gupta, T. Kurc, L. F. Escobar-Hoyos, D. Samaras, B. Knudson, K. Shroyer, J. Saltz, C. Chen
IEEE International Symposium on Biomedical Imaging (ISBI), 2020.
[paper][video][code]




Pathology H&E Whole Slide Image Analysis

Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor-infiltrating Lymphocytes in Invasive Breast Cancer.
H. Le, R. Gupta, L. Hou, S. Abousamra, D. Fassler, L. Torre-Healy, R. Moffitt, T. Kurc, D. Samaras, R. Batiste, T. Zhao, A. Rao, A. Van Dyke, A. Sharma, E. Bremer, J. Almeida, J. Saltz
The American journal of pathology, 2020.
[paper]

Learning from Thresholds: Fully Automated Classification of Tumor Infiltrating Lymphocytes for Multiple Cancer Types.
S. Abousamra, L. Hou, R. Gupta, C. Chen, D. Samaras, T. Kurc, R. Batiste, T. Zhao, S. Kenneth, J. Saltz
Computing Research Repository (CoRR), 2019.
[paper][code]



Fluorescence Microscopy Image Analysis


Localization and Tracking in 4D Fluorescence Microscopy Imagery.
S. Abousamra, S. Adar, N. Elia, R. Shilkrot
Computer Vision and Pattern Recognition Workshops (CVPRW), 2018.
Best poster award - Center of Excellence in Wireless and Information Technology (CEWIT) Conference, 2017
[paper][poster]