I am is a Postdoc at the
Plevritis lab in the department of Biomedical Data Science at Stanford University. I earned my PhD in Computer Science from Stony Brook University in 2024 under the supervision of
Dr. Chao Chen and
Dr. Dimitris Samaras.
My research spans computer vision, biomedical image analysis, and topological data analysis.
I am particulary interested in integrating mathematical modeling with computer vision to create more robust solutions, especially in the context of advancing cancer research and enhancing our understanding of the tumor microenvironment.
Generative Models For Pathology
TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model.
M. Xu, S. Gupta, X. Hu, C. Li,
S. Abousamra, D. Samaras, P. Prasanna, and C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025. (Oral)
[
paper][
poster][
slides][
code]
Spatial Diffusion for Cell Layout Generation.
C. Li, X. Hu,
S. Abousamra, M. Xu, and C. Chen
Medical Image Computing and Computer Assisted Intervention (MICCAI), 2024.
[
paper][
code]
Topology-Guided Multi Class Cell Context Generation for Digital Pathology.
S. Abousamra, R. Gupta, T. Kurc, D. Samaras, J. Saltz, C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.
[
paper][
poster][
video][
slides][
CVPR Daily article]
Semi-Sepervised Segmentation
Semi-supervised Segmentation of Histopathology Images with Noise-aware Topological Consistency.
M. Xu, X. Hu, S. Gupta,
S. Abousamra, and C. Chen
European Conference on Computer Vision (ECCV), 2024.
[
paper][
poster][
presentation][
code]
Uncertainty Estimation for Tumor Prediction with Unlabeled data.
J. Yun,
S. Abousamra, C. Li, R. Gupta, T. Kurc, D. Samaras, A. Van Dyke, J. Saltz, and C. Chen
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2024. (Oral)
[
paper]
Cell Classification
Multi-Class Cell Detection Using Spatial Context Representation.
S. Abousamra, D. Belinsky, J. Arnam, F. Allard, E. Yee, R. Gupta, T. Kurc, D. Samaras, J. Saltz, C. Chen
IEEE/CVF International Conference on Computer Vision (ICCV), 2021, (Oral).
[
paper][
summary][
video][
code]
Crowd Counting and Localization
Brightfield Multiplex IHC Image Analysis
Unsupervised Stain Decomposition via Inversion Regulation for Multiplex Immunohistochemistry Images.
S. Abousamra*, D. Fassler, J. Yao, R. Gupta, T. Kurc, L. Escobar-Hoyos, D. Samaras, K. Shroyer, J. Saltz, C. Chen
Medical Imaging with Deep Learning (MIDL), 2023 (Oral).
[
paper][
code]
Deep learning-based image analysis methods for brightfield-acquired multiplex immunohistochemistry images.
D. Fassler*,
S. Abousamra*, R. Gupta, C. Chen, M. Zhao, D. Paredes, S. Batool, B. Knudsen, L. Escobar-Hoyos, K. Shroyer, D. Samaras, T. Kurc, J. Saltz
Diagnostic Pathology, 2020.
[
paper][
code]
Weakly-Supervised Deep Stain Decomposition For Multiplex IHC Images.
S. Abousamra, D. Fassler, L. Hou, Y. Zhang, R. Gupta, T. Kurc, L. F. Escobar-Hoyos, D. Samaras, B. Knudson, K. Shroyer, J. Saltz, C. Chen
IEEE International Symposium on Biomedical Imaging (ISBI), 2020.
[
paper][
video][
code]
Pathology H&E Whole Slide Image Analysis
Utilizing Automated Breast Cancer Detection to Identify Spatial Distributions of Tumor-infiltrating Lymphocytes in Invasive Breast Cancer.
H. Le, R. Gupta, L. Hou,
S. Abousamra, D. Fassler, L. Torre-Healy, R. Moffitt, T. Kurc, D. Samaras, R. Batiste, T. Zhao, A. Rao, A. Van Dyke, A. Sharma, E. Bremer, J. Almeida, J. Saltz
The American journal of pathology, 2020.
[
paper]
Learning from Thresholds: Fully Automated Classification of Tumor Infiltrating Lymphocytes for Multiple Cancer Types.
S. Abousamra, L. Hou, R. Gupta, C. Chen, D. Samaras, T. Kurc, R. Batiste, T. Zhao, S. Kenneth, J. Saltz
Computing Research Repository (CoRR), 2019.
[
paper][
code]
Fluorescence Microscopy Image Analysis