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Method G(1) G(2) G(3) G(1) G(2) G(3) G(1) G(2) G(3)

CSRNet (Li et al. 2018) 76 113 149 13 21 29 157 187 219

Bayesian (Ma et al 2019) 75 90 130 10 14 23 100 117 150

LSC-CNN (Babu Sam et al. 2019) 70 95 137 10 17 27 126 160 206

TopoCount 69 81 104 10 14 20 102 119 148

1. Localized Counting

Grid Average Mean Absolute Error (G(L)): divide the image into 4L non-overlapping 

cells and computes the mean MAE over all grid cells.

Challenges in Crowd Localization

1. Perspective, occlusion, and cluttering.

2. The features of dots are not specific. 

3. Difficult to prevent spatial semantic errors:
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Contributions: 

1. Overcome these challenges by introducing topological 

constraints in the training phase.

2. Propose persistence loss to enforce topological constraints.  

3. Achieve high quality localization that is useful for crowd 

counting and spatial analysis.

Topological Constraint for Crowd Localization

Within any local patch, the number of connected components in 

the prediction equals to the number of ground truth dots.
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Topological errors Ă Semantic errors

Persistence Loss

• To enforce topological constraints.

• Consider likelihood map as a terrain function f. 

• Each mode of f corresponds to a possible dot prediction.

• Persistence Loss captures all modes and chooses to suppress or 

enhance.
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Method: TopoCountMethod: TopoCount

Input Image Ground Truth Dot Map Prediction Mask

• Formulate crowd localization as a structured prediction problem.

• Each component in the binary prediction represents one dot.

Given a patch  , with c ground truth dots:

Persistence loss reinforces the total 

saliency of the top c modes of f and 

suppresses the saliency of the rest.

Saliency/Persistence of a mode mi

= f(mi) - f(si)  
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Illustration of Persistent Homology 

Training Loss 

Model Architecture

Crowd Localization Problem: Finding the location of each 

person in a crowded scene.

Ground truth: a single dot on each head.
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EvaluationEvaluation

Method F1 / Pre. / Rec. (%)

Faster RCNN (Ren et al. 2015) ���������� ��������
TinyFaces (Hu et al. 2017) ��������������������
VGG+GPR (Gao et al. 2019) ��������������������
RAZ Loc (Liu et al. 2019) ��������������������
TopoCount "�� #������������"�� $

Loss G(3)

BCE Loss 122

DICE Loss 114

DICE Loss + Pers. Loss 104
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2. Ablation Study: Loss function

Compare training with and without persistence loss:

• Dice loss only better than binary cross entropy 

(BCE) loss only. 

• Dice loss + Persistence loss give lowest error.

3. Dot Matching Accuracy

Compare precision, recall, and F-

score on NWPU localization 

challenge.
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4. Integration with density-map 

counting:

code: https://github.com/TopoXLab/TopoCount

email: shahira.abousamra@stonybrook.edu
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